Indian J. pure appl. Math., 35(1) : 23-30, January 2004
© Printed in India.

REFINEMENTS OF HGA INEQUALITIES AND FAN’S INEQUALITY

GOU-SHENG YANG' AND KUEI-LIN TSENG'"

1erartment of Mathematics, Tamkang University, Tamsui Taiwan 25137
Department of Mathematics, Aletheia Universty, Tamsui Taiwan 25103
e-mail: kltseng @email.au.edu.tw

(Received 5 November 2001; accepted 2 January 2003)

In this paper, we establish a refinement of HGA inequalities and Fan’s inequality
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1. INTRODUCTION

n

Throughout, let n be a positive integer and &, 20 (i = 1, .., n) with 2 a;=1. Let

i=1

n n X
i .
A, = 2 a;x; a,= Z o where x,;€ R, i = 1, .., n,
i=1

i=1

n n 1

G,= H x?”; 8, = H x,;, where x;20, i = 1, .., n, and
[=l l=1
n w n 1
H = A1, h, = L h 0,i=1
= Z Pl I 2 o | - where x>0, i=1,...n
i=1 ! i=1 ¢
be the weighted and unweighted arithmetic mean, geometric mean and harmonic mean of x, ... x,.
Also, let
n n 1-x.
A= 2 o, (l-x); a,= 2 * where X;€R, i=1, ..,n
i=1 i=1
n n 1
G,= Y (1-x)% g,= 3, (1-x)n, where x;€ (=0, 1], i=1,..,n, and
i=1 i=1
n ! n 1
H=l ¥ 2| k=] Y —L—|  wherexe@Di=1, .n
n- l-x, | > 'n n(l-x) |’ U -

i=1

be the weighted and unweighted arithmetic mean, geometric mean and harmonic mean of
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1-x,..,1-x_. In recent years many interesting inequalities involving these means have been

published, see, for example [1], [2], [6], [7], [8]. The classical HGA (harmonic geometric arithmetic)
inequalities are known as the following theorem :

Theorem A — If x;€ (0,%),i=1,..,n, then
H <(, <A, . (1.1)

with equality if and only if x| =...=x,.
In3, Chong gave a refinement of the second inequality of HAG inequality as the following
theorem.

Theorem B — Let X[y e X, be positive numbers and

o
n n i
so=J1 |+ X ax+(1-0x |, te[01] . (1.2)
i=1 j=1
Then s(#) is strictly increasing on [0, 1], unless x;=...=x, and
G,=s5(0)<s()<s(1)=A, .. (1.3)

We note that if x; is replaced by 1-x;(i=1,..,n) in (1.2), then we have

1 1 1
=50 550) " % - (14)

which is a refinement of the first inequality of HGA inequalities.
In9, Wang and Yang established the inequalities (1.3) and (1.4) for unweighted mean.

Theorem C — Assume x; € (0, ) (i=1, ...,n) which do not all coincide. For te [O, %:I let

1
a(=[] %+t Y, (%——xl] .. (1.5)
i=1 ! j=1 Jo
and Boy= I1 [x+t X (x;~ %) .. (1.6)

i=1 Jj=1

Then o (f) and B () are continuous strictly monotonic functions on [0, -1—] such that
n

hn=a(%]s a(t)Sa(O)=gn=/3(O)Sﬁ(t)SB(%J=an. )

In 1961, Beckenbach and Bellman [4, p. 25] published a remarkable counterpart of the
classical AG (arithmetic-geometric) inequality due to Ky Fan :
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g a
—,ﬁs—f’, where x; € (O,%},izl,...,n, ... (1.8)
gn an

with equality if and only if x;=...=x,.

Many authors have verified that Fan’s inequality holds for weighted mean too, i.e.

—<—, where x;e o,l],i=1,...,n, .. (1.9)
G, A, 2
with equality if and only if x; =...=x,. (see for examples)

In9, Wang and Yang gave a refinement of Fan’s inequality for unweighted mean as the
following theorem :

Theorem D — Assume x; € (0,%:' (i=1,...,n) which do not all coincide. For te I:O, %}

let

n n n
1 1 1
vo=IT |+ 2 |77 ! - (1.10)
i=1 |7 =1 U
1
n n n
X+t z (x]—xl)
i=1 j=1 i

and o () =—" . (111

1
n n n
H 1-x,—t z (xj—xl.)

i=1 j=1

Then y(f) and p (f) are continuous strictly monotonic functions on [O,%] such that

h 1 g 1 a

] "h = (;)gy(t)Sy(0)= 7=p(0)£p(t)$p(—)=-—,'1. .. (1.12)
" g i a

n n
We remark that (1.9) can not be extended to

a a

G A
n < n

G,B_X'B , . (1.13)
n n

N[

where a, >0, x; € |0,

], i =1, .., n; for example, let n=2, x1=15—1,x2=%, a1=a2=%

a=1,=2, then
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;‘Qﬁl ;Q
\
& bl >

In next section, we shall prove that the inequality (1.13) holds under some condition.

2. MAIN RESULTS

Theorem 1 — If I, J are two intervals in R,f:1—> R is a decreasing function with
f(hcl,g:J>R is a continuous strictly increasing function such that gof is convex,

n

x;€ 1(i=1,...n) with Y, ox;Sz where z€ I, and if G is defined on [0, 1] by

i=1

n

GH=g ' Y a@nl-nx+m) |, . (2.0)

i=1
then G is lecreasing on [0, 1] and

n

f@=6GSGH<GO)=g""| Y a@eNHx)|,05r<1. . (2.2)

i=1

PROOF : Since g is strictly increasing and f is decreasing, so that gof is decreasing. Now,

using the convexity of gof and the assumption that 2 Q; x; <z, we have

i=1

n

G = Y, o (gof)((1-1)x+12)

i=1

2(gof)| D, o((1-Hx;+12)

i=1

=@g°Nl (-9 Y ax+n

i=1
2(8of)(D=(g-G) (1), . (2.3)

for all re [0, 1].

We note that the composition of a convex function and a linear function is convex and that
a positive constant mulitple of convex function and a sum of convex functions are convex, hence
goG is convex on [0, 1]. If 0<s<t<1, then it follows from the convexity of go G and (2.3) that

0cG)(t)—(go G o G)(H-(go G
(g )(tz_gg )(s) (& )(1)_58 AU . 24

which shows that go G is decreasing on [0, 1]. Since g is strictly increasing, go G is decreasing
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on [0, 1] so that G=g~1 o (g o G) is decreasing on [0, 1]. Hence (2.2) holds. This completes the

proof.
Theorem 2 — Let a>0,8>0,¢>0,1=|0 cVa x;€l@i=1,.,n) and let
, ) , ,m ) X;
AnSszi-%-ﬁ—, 0<z'SHn. Let M (t) and N (t) be defined on [0, 1] by
" (A -0x+1)*%
M@) = - (2.5)
© 1-1:[1 (c—(1-Hx,— )P %
and
aal.
ad-9_
n xi Zl
No= [] m .. (2.6)
i=1 [(l—t)c+t_€_1f ‘
Then M(¢) is increasing on [0, 1], N(¢) is decreasing on [0, 1]
o
n
a
"no H xi‘
—%:N(l)SN(t)sN(op i=1
(c-2) n
IT €%
i=1
Z(X
= M(0) < M) <M(1) = 5. tel0.1] . (27
(c-2)
. _Le=0f ) _ cVa
PROOF : (1) Let f(x)= = ,x€ 1l and g(x) = In x,xe (0,), x,z€ (O,W} )
(i =1, .., n) with 2 o;x;<z. Then g is continuous strictly increasing on (0, o) and
i=1
(gop(X)=PIn(c-x)—alnx,
2
s0 that “—i-i(gof) ) = [‘ja—(c"x)‘“/éx] [‘/52(""‘)“/3"] >0
dx x“(c—x)
d,, . =Bxc-0P! —ae-»P
and dxf(x)_ P <0

x
for xe[O,Vg—‘%ﬁj. Hence gof is convex on (O,ﬁ%ﬁ:l and f is decreasing on
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cVa . .
(O,m} By Theorem 1, G(r) is increasing on [0, 1]. Now

Toe-(-nx-)P%
Go= 11 2o - M)

i=1 ((l—t)xl.+tz)

Hence M(r) is increasing on [0, 1], and

x
a
[ =l =MO)SMOM(D)=—— - (28)
n (c-2)
I1

(c— x)

i=1

\/E-Fo:[—, oo ) R and g(x)=Inx, xe (0, ),

(3]

(2) Let f)=xF"%cx-1),xe [

n
, Vo + . . , . . . . .
V2 € [Wag,oo (i =1, .., n) with E ¢;y;<7. Then g is continuous strictly increasing on

i=1
(0, =) and

goNX)=(B-0)Inx+In(cx—1),

2
so that %(g of) (¥) = o(cx— 1) +ﬁ(2cx Do
dx X (ex— 1)
and ixd"f(X)=xﬁ_a—l(cx-1)“ﬁ-1[_ﬁ_a(x_l)]<0
for x e (w’ = J Hence gof is convex on [%;@— ] and f is decreasing on
[\/E-Hj—,w) By Theorem 1,
cVa

" (-ny+ 17y 8- 9¢;

G@t) = I‘I

i=1 (1 =Dcy;+1c - 1)/30!,.

is decreasing on [0, 1].

) o,
If x;e (0,3&%] (i=1, ., n) and O<z——zl—< 2 ;’ then
i

=t z=le [ﬁ‘“f_,oo] (i=1,..,n)

X; Z cNQ
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and

B-0)a,
(1)
X, 7

No= ]

]

; 1-9c ¢ %
i=1 +=-1

is decreasing on [0, 1], so that

=G ()

n o o
@) [ I—-Ix xi']
—=——=N(1) SN() SN(0) = A

—" - . . (2.9)
c—2

i=1

This completes the proof.
Remark 2.1 : In Theorem 2, let ¢ = 1. Then

n

(1 = 1)x; + 12)**
M() =
® l}(l—ﬂ—ﬂﬁ-&f%

is increasing on [0, 1], and

" X
i

Lgl -1 +l}(ﬂ—a)a,~
zl

NG@) =

By

X

is decreasing on [0, 1], so that

@ _N1)SNOSNO)= G —MOMOM=— - (2.10)
c-2)F —7’ (1-2P
If we choose z’=Hn and z=A,, then
(4 o A(X
(I_H”)ﬂ_N(l)<N(t)<N(O) —T—M(0)<M(t)<M(1)W .. (2.11)

where x.€ | 0, Vo , i =1, .., n. We note that (1.9) is a special case of (2.11) when
: Ya +VB

oa=B=1.
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Remark 2.2 : In Theoem 2, if we choose a=f=c=1, ai:%, x; € [0%] not all coincide

— 1
n n

X
(=1, .,n),ad let z= Y 715 and /= Y nxi . Then N(nt)=7Y(:) and M (nt)=p (2),

i=1 i=1 ¢
te [0,;11-} where y(r) and p (r) are defined as in (1.10) and (1.11). Hence, Theorem D is a special
case of Theorem 2.

Remark 2.3 : The inequalities (1.3) and (1.4) can be deduced from (2.7) by taking
a=1,7=H,z=A_ and B—0.
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