REFINEMENTS OF HGA INEQUALITIES AND FAN'S INEQUALITY

GOU-SHENG YANG* AND KUEI-LIN TSENG**

*Department of Mathematics, Tamkang University, Tamsui Taiwan 25137
**Department of Mathematics, Aletheia Universty, Tamsui Taiwan 25103
e-mail: kltseng@email.au.edu.tw

(Received 5 November 2001; accepted 2 January 2003)

In this paper, we establish a refinement of HGA inequalities and Fan's inequality

Key Words: Inequality of Ky Fan, HGA Inequalities, Arithmetic Mean; Geometric Mean; Harmonic Mean; Convex Function

1. INTRODUCTION

Throughout, let *n* be a positive integer and $\alpha_i \ge 0$ (i = 1, ..., n) with $\sum_{i=1}^{n} \alpha_i = 1$. Let

$$A_n = \sum_{i=1}^n \alpha_i x_i; \ a_n = \sum_{i=1}^n \frac{x_i}{n}, \text{ where } x_i \in R, \ i = 1, ..., n,$$

$$G_n = \prod_{i=1}^n x_i^{a_i}$$
; $g_n = \prod_{i=1}^n x_i^{n-1}$, where $x_i \ge 0$, $i = 1, ..., n$, and

$$H_n = \left(\sum_{i=1}^n \frac{\alpha_i}{x_i} \right)^{-1}; \quad h_n = \left(\sum_{i=1}^n \frac{1}{nx_i} \right)^{-1}, \text{ where } x_i > 0, \ i = 1, ..., n$$

be the weighted and unweighted arithmetic mean, geometric mean and harmonic mean of $x_1, ..., x_n$. Also, let

$$A'_{n} = \sum_{i=1}^{n} \alpha_{i} (1-x_{i}); \ a'_{n} = \sum_{i=1}^{n} \frac{1-x_{i}}{n}, \text{ where } x_{i} \in R, \ i = 1, ..., n,$$

$$G'_{n} = \sum_{i=1}^{n} (1 - x_{i})^{\alpha_{i}}; \quad g'_{n} = \sum_{i=1}^{n} (1 - x_{i})^{\frac{1}{n}}, \text{ where } x_{i} \in (-\infty, 1], \quad i = 1, ..., n, \text{ and}$$

$$H'_{n} = \left(\sum_{i=1}^{n} \frac{\alpha_{i}}{1 - x_{i}}\right)^{-1}; \quad h'_{n} = \left(\sum_{i=1}^{n} \frac{1}{n(1 - x_{i})}\right)^{-1}, \text{ where } x_{i} \in (0, 1) \ i = 1, ..., n$$

be the weighted and unweighted arithmetic mean, geometric mean and harmonic mean of

 $1-x_1$, ..., $1-x_n$. In recent years many interesting inequalities involving these means have been published, see, for example [1], [2], [6], [7], [8]. The classical HGA (harmonic geometric arithmetic) inequalities are known as the following theorem:

Theorem A — If $x_i \in (0, \infty)$, i = 1, ..., n, then

$$H_n \le C_n \le A_n \qquad \dots \tag{1.1}$$

with equality if and only if $x_1 = ... = x_n$.

In³, Chong gave a refinement of the second inequality of HAG inequality as the following theorem.

Theorem B — Let $x_1, ..., x_n$ be positive numbers and

$$s(t) = \prod_{i=1}^{n} \left[t \sum_{j=1}^{n} \alpha_{j} x_{j} + (1-t) x_{i} \right]^{\alpha_{i}}, \quad t \in [0, 1].$$
 ... (1.2)

Then s(t) is strictly increasing on [0, 1], unless $x_1 = ... = x_n$ and

$$G_n = s(0) \le s(t) \le s(1) = A_n.$$
 ... (1.3)

We note that if x_i is replaced by $1 - x_i$ (i = 1, ..., n) in (1.2), then we have

$$H_n = \frac{1}{s(1)} \le \frac{1}{s(t)} \le \frac{1}{s(0)} = G_n$$
 ... (1.4)

which is a refinement of the first inequality of HGA inequalities.

In⁹, Wang and Yang established the inequalities (1.3) and (1.4) for unweighted mean.

Theorem C — Assume $x_i \in (0, \infty)$ (i = 1, ..., n) which do not all coincide. For $t \in \left[0, \frac{1}{n}\right]$ let

$$\alpha(t) = \prod_{i=1}^{n} \left[\frac{1}{x_i} + t \sum_{j=1}^{n} \left(\frac{1}{x_j} - \frac{1}{x_i} \right) \right]^{\frac{1}{n}} \dots (1.5)$$

and

$$\beta(t) = \prod_{i=1}^{n} \left[x_i + t \sum_{j=1}^{n} (x_j - x_i) \right]^{\frac{1}{n}} \dots (1.6)$$

Then $\alpha(t)$ and $\beta(t)$ are continuous strictly monotonic functions on $\left[0, \frac{1}{n}\right]$ such that

$$h_n = \alpha \left(\frac{1}{n}\right) \le \alpha(t) \le \alpha(0) = g_n = \beta(0) \le \beta(t) \le \beta \left(\frac{1}{n}\right) = a_n. \tag{1.7}$$

In 1961, Beckenbach and Bellman [4, p. 25] published a remarkable counterpart of the classical AG (arithmetic-geometric) inequality due to Ky Fan:

$$\frac{g_n}{g_n} \le \frac{a_n}{a_n}$$
, where $x_i \in \left(0, \frac{1}{2}\right]$, $i = 1, ..., n$, ... (1.8)

with equality if and only if $x_1 = ... = x_n$.

Many authors have verified that Fan's inequality holds for weighted mean too, i.e.

$$\frac{G_n}{G_n'} \le \frac{A_n}{A_n'}$$
, where $x_i \in \left(0, \frac{1}{2}\right]$, $i = 1, ..., n$, ... (1.9)

with equality if and only if $x_1 = ... = x_n$. (see for example⁵)

 ${\rm In}^9$, Wang and Yang gave a refinement of Fan's inequality for unweighted mean as the following theorem :

Theorem D — Assume $x_i \in \left(0, \frac{1}{2}\right]$ (i = 1, ..., n) which do not all coincide. For $t \in \left[0, \frac{1}{n}\right]$,

$$\gamma(t) = \prod_{i=1}^{n} \left[\frac{1}{x_i} + t \sum_{j=1}^{n} \left(\frac{1}{x_j} - \frac{1}{x_i} \right) - 1 \right]^{\frac{-1}{n}} \dots (1.10)$$

and

let

$$\rho(t) = \frac{\prod_{i=1}^{n} \left[x_i + t \sum_{j=1}^{n} (x_j - x_i) \right]^{\frac{1}{n}}}{\prod_{i=1}^{n} \left[1 - x_i - t \sum_{j=1}^{n} (x_j - x_i) \right]^{\frac{1}{n}}} \dots (1.11)$$

Then $\gamma(t)$ and $\rho(t)$ are continuous strictly monotonic functions on $\left[0,\frac{1}{n}\right]$ such that

$$\frac{h_n}{1-h_n} = \gamma \left(\frac{1}{n}\right) \le \gamma(t) \le \gamma(0) = \frac{g_n}{g_n} = \rho(0) \le \rho(t) \le \rho\left(\frac{1}{n}\right) = \frac{a_n}{a_n}. \tag{1.12}$$

We remark that (1.9) can not be extended to

$$\frac{G_n^{\alpha}}{G_n^{'\beta}} \le \frac{A_n^{\alpha}}{A_n^{'\beta}} , \qquad \dots (1.13)$$

where $\alpha, \beta > 0, x_i \in \left(0, \frac{1}{2}\right]$, i = 1, ..., n; for example, let $n = 2, x_1 = \frac{5}{11}, x_2 = \frac{1}{2}, \alpha_1 = \alpha_2 = \frac{1}{2}, \alpha_2 = 1, \beta = 2$, then

$$\frac{G_n}{G_n^{'2}} > \frac{A_n}{A_n^{'2}}.$$

In next section, we shall prove that the inequality (1.13) holds under some condition.

2. MAIN RESULTS

Theorem 1 — If I, J are two intervals in $R, f: I \to R$ is a decreasing function with $f(I) \subset J, g: J \to R$ is a continuous strictly increasing function such that $g \circ f$ is convex,

 $x_i \in I (i = 1, ..., n)$ with $\sum_{i=1}^{n} \alpha_i x_i \le z$ where $z \in I$, and if G is defined on [0, 1] by

$$G(t) = g^{-1} \left[\sum_{i=1}^{n} \alpha_i (g \circ f) ((1-t) x_i + tz) \right], \qquad \dots (2.1)$$

then G is lecreasing on [0, 1] and

$$f(z) = G(1) \le G(t) \le G(0) = g^{-1} \left[\sum_{i=1}^{n} \alpha_i (g \circ f) (x_i) \right], 0 \le t \le 1.$$
 ... (2.2)

PROOF: Since g is strictly increasing and f is decreasing, so that $g \circ f$ is decreasing. Now,

using the convexity of $g \circ f$ and the assumption that $\sum_{i=1}^{\infty} \alpha_i x_i \leq z$, we have

$$(g \circ G)(t) = \sum_{i=1}^{n} \alpha_{i}(g \circ f)((1-t)x_{i}+tz)$$

$$\geq (g \circ f) \left[\sum_{i=1}^{n} \alpha_{i}((1-t)x_{i}+tz) \right]$$

$$= (g \circ f) \left[(1-t) \sum_{i=1}^{n} \alpha_{i}x_{i}+tz \right]$$

$$\geq (g \circ f)(z) = (g \circ G)(1), \qquad \dots (2.3)$$

for all $t \in [0, 1]$.

We note that the composition of a convex function and a linear function is convex and that a positive constant mulitple of convex function and a sum of convex functions are convex, hence $g \circ G$ is convex on [0, 1]. If $0 \le s < t < 1$, then it follows from the convexity of $g \circ G$ and (2.3) that

$$\frac{\left(g \circ G\right)\left(t\right) - \left(g \circ G\right)\left(s\right)}{t - s} \le \frac{\left(g \circ G\right)\left(1\right) - \left(g \circ G\right)\left(t\right)}{1 - t} \le 0 \qquad \dots (2.4)$$

which shows that $g \circ G$ is decreasing on [0, 1]. Since g is strictly increasing, $g \circ G$ is decreasing

on [0, 1] so that $G = g^{-1} \circ (g \circ G)$ is decreasing on [0, 1]. Hence (2.2) holds. This completes the proof.

Theorem 2 — Let $\alpha > 0$, $\beta > 0$, c > 0, $I = \left(0, \frac{c\sqrt{\alpha}}{\sqrt{\alpha} + \sqrt{\beta}}\right)$, $x_i \in I$ (i = 1, ..., n) and let $A_n \le z \le \frac{c\sqrt{\alpha}}{\sqrt{\alpha} + \sqrt{\beta}}$, $0 < z' \le H_n$. Let M (t) and N (t) be defined on [0, 1] by

$$M(t) = \prod_{i=1}^{n} \frac{((1-t)x_i + tz)^{\alpha \alpha_i}}{(c - (1-t)x_i - tz)^{\beta \alpha_i}} \dots (2.5)$$

and

$$N(t) = \prod_{i=1}^{n} \frac{\left(\frac{(1-t)}{x_{i}} + \frac{t}{z'}\right)^{\alpha} \alpha_{i}}{\left(\frac{(1-t)c}{x_{i}} + \frac{tc}{z'} - 1\right)^{\beta} \alpha_{i}} \dots (2.6)$$

Then M(t) is increasing on [0, 1], N(t) is decreasing on [0, 1]

$$\frac{(z')^{\alpha}}{(c-z')^{\beta}} = N(1) \le N(t) \le N(0) = \frac{\left(\prod_{i=1}^{n} x_{i}^{\alpha_{i}}\right)^{\alpha}}{\left(\prod_{i=1}^{n} (c-x_{i})^{\alpha_{i}}\right)^{\beta}}$$

$$= M(0) \le M(t) \le M(1) = \frac{z^{\alpha}}{(c-z)^{\beta}}, \quad t \in [0, 1] \qquad \dots (2.7)$$

PROOF: (1) Let
$$f(x) = \frac{(c-x)^{\beta}}{x^{\alpha}}, x \in I$$
 and $g(x) = \ln x, x \in (0, \infty), x_i, z \in \left[0, \frac{c\sqrt{\alpha}}{\sqrt{\alpha} + \sqrt{\beta}}\right]$,

(i = 1, ..., n) with $\sum_{i=1}^{n} \alpha_i x_i \le z$. Then g is continuous strictly increasing on $(0, \infty)$ and

$$(g \circ f)(x) = \beta \ln (c - x) - \alpha \ln x,$$

$$\frac{d^2}{dx^2}(g \circ f)(x) = \frac{\left[\sqrt{\alpha}(c-x) - \sqrt{\beta}x\right]\left[\sqrt{\alpha}(c-x) + \sqrt{\beta}x\right]}{x^2(c-x)^2} > 0$$

and
$$\frac{d}{d}$$

$$\frac{d}{dx}f(x) = \frac{-\beta x (c-x)^{\beta-1} - \alpha (c-x)^{\beta}}{r^{\alpha+1}} < 0$$

for
$$x \in \left(0, \frac{c\sqrt{\alpha}}{\sqrt{\alpha} + \sqrt{\beta}}\right)$$
. Hence $g \circ f$ is convex on $\left(0, \frac{c\sqrt{\alpha}}{\sqrt{\alpha} + \sqrt{\beta}}\right]$ and f is decreasing on

 $\left(0, \frac{c\sqrt{\alpha}}{\sqrt{\alpha} + \sqrt{\beta}}\right]$. By Theorem 1, G(t) is increasing on [0, 1]. Now

$$G(t) = \prod_{i=1}^{n} \frac{(c - (1-t) x_i - tz)^{\beta \alpha_i}}{((1-t) x_i + tz)^{\alpha \alpha_i}} = \frac{1}{M(t)}$$

Hence M(t) is increasing on [0, 1], and

$$\frac{\left(\prod_{i=1}^{n} x_{i}^{\alpha_{i}}\right)^{\alpha}}{\left(\prod_{i=1}^{n} (c-x_{i})^{\alpha_{i}}\right)^{\beta}} = M(0) \leq M(t) \leq M(1) = \frac{z^{\alpha}}{(c-z)^{\beta}}.$$
 ... (2.8)

(2) Let
$$f(x) = x^{\beta - \alpha} (cx - 1), x \in \left[\frac{\sqrt{\alpha} + \sqrt{\beta}}{c \sqrt{\alpha}}, \infty \right],$$
 and $g(x) = \ln x, x \in (0, \infty),$

 $y_i, z' \in \left[\frac{\sqrt{\alpha} + \sqrt{\beta}}{c\sqrt{\alpha}}, \infty\right]$ (i = 1, ..., n) with $\sum_{i=1}^{n} \alpha_i y_i \le z'$. Then g is continuous strictly increasing on $(0, \infty)$ and

$$(g \circ f)(x) = (\beta - \alpha) \ln x + \ln (cx - 1),$$

so that
$$\frac{d^2}{dx^2} (g \circ f) (x) = \frac{\alpha (cx - 1)^2 + \beta (2cx - 1)}{x^2 (cx - 1)^2} > 0$$
and
$$\frac{d}{dx} f(x) = x^{\beta - \alpha - 1} (cx - 1)^{-\beta - 1} [-\beta - \alpha (x - 1)] < 0$$

for $x \in \left(\frac{\sqrt{\alpha} + \sqrt{\beta}}{c\sqrt{\alpha}}, \infty\right)$. Hence $g \circ f$ is convex on $\left[\frac{\sqrt{\alpha} + \sqrt{\beta}}{c\sqrt{\alpha}}, \infty\right)$ and f is decreasing on

$$\left[\begin{array}{c} \sqrt{\alpha} + \sqrt{\beta} \\ c\sqrt{\alpha} \end{array}, \infty\right]$$
. By Theorem 1,

$$G(t) = \prod_{i=1}^{n} \frac{((1-t) y_i + tz')^{(\beta - \alpha)\alpha_i}}{((1-t) cy_i + tcz' - 1)^{\beta \alpha_i}}$$

is decreasing on [0, 1].

If
$$x_i \in \left(0, \frac{c\sqrt{\alpha}}{\sqrt{\alpha} + \sqrt{\beta}}\right]$$
 $(i = 1, ..., n)$ and $0 < z = \frac{1}{z'} \le \left(\sum_{i=1}^n \frac{\alpha_i}{x_i}\right)^{-1}$ then $y_i = \frac{1}{x_i}, \ z' = \frac{1}{z} \in \left[\frac{\sqrt{\alpha} + \sqrt{\beta}}{c\sqrt{\alpha}}, \infty\right]$ $(i = 1, ..., n)$

and

$$N(t) = \prod_{i=1}^{n} \frac{\left(\frac{(1-t)}{x_i} + \frac{t}{z'}\right)^{(\beta-\alpha)} \alpha_i}{\left(\frac{(1-t)c}{x_i} + \frac{tc}{z'} - 1\right)^{\beta\alpha_i}} = G(t)$$

is decreasing on [0, 1], so that

$$\frac{(z')^{\alpha}}{(c-z')^{\beta}} = N(1) \le N(t) \le N(0) = \frac{\left(\prod_{i=1}^{n} x_{i}^{\alpha_{i}}\right)^{\alpha}}{\left(\prod_{i=1}^{n} (c-x_{i})^{\alpha_{i}}\right)^{\beta}} . \tag{2.9}$$

This completes the proof.

Remark 2.1: In Theorem 2, let c = 1. Then

$$M(t) = \prod_{i=1}^{n} \frac{((1-t)x_{i} + tz)^{\alpha \alpha_{i}}}{(1-(1-t)x_{i} - tz)^{\beta \alpha_{i}}}$$

is increasing on [0, 1], and

$$N(t) = \prod_{i=1}^{n} \frac{\left(\frac{(1-t)}{x_i} + \frac{1}{z'}\right)^{(\beta-\alpha)\alpha_i}}{\left(\frac{(1-t)}{x_i} + \frac{1}{z'} - 1\right)^{\beta\alpha_i}}$$

is decreasing on [0, 1], so that

$$\frac{(z')^{\alpha}}{(c-z')^{\beta}} = N(1) \le N(t) \le N(0) = \frac{G_n^{\alpha}}{G_n^{\beta}} = M(0) \le M(t) \le M(1) = \frac{z^{\alpha}}{(1-z)^{\beta}}.$$
 (2.10)

If we choose $z' = H_n$ and $z = A_n$, then

$$\frac{H_n^{\alpha}}{(1 - H_n)^{\beta}} = N(1) \le N(t) \le N(0) = \frac{G_n^{\alpha}}{G_n^{\beta}} = M(0) \le M(t) \le M(1) \frac{A_n^{\alpha}}{A_n^{\beta}} \qquad \dots (2.11)$$

where $x_i \in \left(0, \frac{\sqrt{\alpha}}{\sqrt{\alpha} + \sqrt{\beta}}\right]$, i = 1, ..., n. We note that (1.9) is a special case of (2.11) when $\alpha = \beta = 1$.

Remark 2.2 : In Theoem 2, if we choose $\alpha = \beta = c = 1$, $\alpha_i = \frac{1}{n}$, $x_i \in \left(0, \frac{1}{2}\right]$ not all coincide

$$(i = 1, ..., n)$$
, and let $z = \sum_{i=1}^{n} \frac{x_i}{n}$ and $z' = \left(\sum_{i=1}^{n} \frac{1}{nx_i}\right)^{-1}$. Then $N(nt) = \gamma(t)$ and $M(nt) = \rho(t)$,

 $t \in \left[0, \frac{1}{n}\right]$ where $\gamma(t)$ and $\rho(t)$ are defined as in (1.10) and (1.11). Hence, Theorem D is a special case of Theorem 2.

Remark 2.3: The inequalities (1.3) and (1.4) can be deduced from (2.7) by taking $\alpha = 1, z' = H'_n, z = A_n$ and $\beta \to 0$.

REFERENCES

- 1. H. Alzer, Acta Appl. Math 38 (1995), 305-54.
- 2. H. Alzer, J. Math. Anal. Appl. 240 (1996), 291-97.
- 3. K. M. Chong, Nanta Mathematica, 10(1) (1977), 26-27.
- 4. A. M. Fink, J. E. Pecaric and D. S. Mitrinovic, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993.
- 5. H. Flanders, Amer. Math. Monthly 86 (1979).
- 6. M. S. Klamlain and D. J. Newman, Math. Mag., 43 (1970).
- 7. N. Levinson, J. Math. Anal. Apl., 3 (1964), 133-34.
- 8. W. L. Wang and P. P. Wang, Acta Math Simica, 27 (1984), 485-97 (in Chinese).
- 9. C. S. Wang and G. S. Yang, J. Math. Anal. Appl., 20 (1998), 955-65.